Generalized bent Boolean functions and strongly regular Cayley graphs
نویسندگان
چکیده
منابع مشابه
Twin bent functions, strongly regular Cayley graphs, and Hurwitz-Radon theory
The real monomial representations of Clifford algebras give rise to two sequences of bent functions. For each of these sequences, the corresponding Cayley graphs are strongly regular graphs, and the corresponding sequences of strongly regular graph parameters coincide. Even so, the corresponding graphs in the two sequences are not isomorphic, except in the first 3 cases. The proof of this nonis...
متن کاملGeneralized Boolean Bent Functions
The notions of perfect nonlinearity and bent functions are closely dependent on the action of the group of translations over IF2 . Extending the idea to more generalized groups of involutions without fixed points gives a larger framework to the previous notions. In this paper we largely develop this concept to define G-perfect nonlinearity and G-bent functions, where G is an Abelian group of in...
متن کاملBent and generalized bent Boolean functions
In this paper, we investigate the properties of generalized bent functions defined on Z2 with values in Zq , where q ≥ 2 is any positive integer. We characterize the class of generalized bent functions symmetric with respect to two variables, provide analogues of Maiorana–McFarland type bent functions and Dillon’s functions in the generalized set up. A class of bent functions called generalized...
متن کاملStrongly Regular Semi-Cayley Graphs
We consider strongly regular graphs r = (V, E) on an even number, say 2n, of vertices which admit an automorphism group G of order n which has two orbits on V. Such graphs will be called strongly regular semi-Cayley graphs. For instance, the Petersen graph, the Hoffman-Singleton graph, and the triangular graphs T(q) with q = 5 mod 8 provide examples which cannot be obtained as Cayley graphs. We...
متن کاملStrongly regular graphs constructed from p-ary bent functions
In this paper, we generalize the construction of strongly regular graphs in Tan et al. (J. Comb. Theory, Ser. A 117:668–682, 2010) from ternary bent functions to p-ary bent functions, where p is an odd prime. We obtain strongly regular graphs with three types of parameters. Using certain non-quadratic p-ary bent functions, our constructions can give rise to new strongly regular graphs for small...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2020
ISSN: 0166-218X
DOI: 10.1016/j.dam.2020.01.026